Qorvo

QPG7015M

QOLVO

QPG7015M

IEEE 802.15.4 / Bluetooth® Low Energy Multi-Protocol **Multi-Channel Communications Controller**

Product Brief

The QPG7015M transceiver features Dynamic Multi-**Protocol and ConcurrentConnect™. This enables** seamless Bluetooth[®] Low Energy Mesh and Zigbee / Thread network management at the same time.

- ConcurrentConnect[™]: allowing instantaneous switching between Bluetooth Low Energy and IEEE 802.15.4 protocols with no observable blind spots
- **RF** performance optimized for Central Hub use cases
 - Unique antenna diversity technology doubles the effective range
 - Inherently designed for interference robustness
 - Instant preamble detection allows swift medium arbitration
 - Maximized isolation by selecting lower noise antenna
- Boosted range to power consumption ratio
- +20 dBm transmit power with 100 mA current (3 V)
- Small footprint (4x4 mm) to save real estate

−∏⊦

32 MHz

비민

32 KiHz (optional

- Integrated design for lowest external RBOM: requires up to 4x fewer components
- Designed for low power IoT applications such as:
 - Gateways • Set-top Boxes • Wi-Fi Routers

ANIO

QORVO

QPG7015M IEEE 802.15.4 / Bluetooth® Low Energy Multi-Protocol Multi-Channel Communications Controller

Key Features

- Operates in the worldwide 2.4 GHz ISM-band
- Integrated PA, RF switch, matching and filters
- IEEE 802.15.4 compliant PHY and Real-Time MAC
 - Preamble-based antenna diversity
 - Packet-in-Packet resynchronization 0
 - Multi-Stack / Multi-Channel support, operating in up to 3 0 PANs on different channels
- Bluetooth 5.0 compliant Low Energy Controller
 - High Data Rate (2 Mbits/s) 0
 - Long Range Coded PHY
 - o Link Layer Privacy
 - Advertising extensions
 - Support for Angle of Arrival and Angle of Departure 0
 - Support for Bluetooth Direct Test Mode (DTM)
- HW-accelerated dynamic multi-protocol support • Allows combining Bluetooth Low Energy Peripheral/Advertiser with Zigbee/Thread router
- ConcurrentConnect: Concurrent IEEE 802.15.4 and Bluetooth ٠ listening
 - Allows combining Bluetooth Low Energy Central/Observer or Excellent Range and Reliability Mesh Node with Zigbee/Thread router
- Stand-alone Zigbee rf4ce DutyCycling support and rf4ce packet filtering when the host is asleep
- Advanced Security Engine
 - Hardware accelerated AES and CCM* encryption with 128, 192 and 256-bit keys
 - Hashing engine: SHA-128, SHA-2 (SHA-256, SHA-512)
 - Public Key Crypto 0
 - Elliptic Curve; support for ECDSA, ECDH, P256, Curve25519, J-Pake, ECMQV, EdDSA, etc.
 - Cryptographic Random Number Generator
 - Support for Physical Unclonable Function (PUF)
- Flash Program and RAM memory for real-time firmware, filtering code and data buffering
- SPI Slave, UART or USB Device host interface
- Coexistence Interface with other radios in the device

Multi-Protocol Stack Support at Host Processor

The QPG7015M can support multiple protocol stacks in the host processor. Multiple IEEE 802.15.4 based stacks (Zigbee, Thread, proprietary) can interface simultaneously with the QPG7015M MAC API through a MAC Dispatcher, while the Bluetooth Low Energy Host Stack can interface with the QPG7015M at the HCI level at the same time.

Multi-Channel Support

For the IEEE 802.15.4 communications, the QPG7015M can simultaneously listen for packets on three different PANs (Personal Area Networks) that may be on the same or on different RF channels. In this way it can support the Zigbee coordinator role, concurrently with an rf4ce Target role and a Thread Border Router role, even if these networks run on different RF channels.

HW-Accelerated Dynamic Multi-Protocol Support

The QPG7015M has HW support to seamlessly interleave Bluetooth Low Energy communications (advertisements and Bluetooth connections) with IEEE 802.15.4 communications.

This feature can be combined with Multi-Channel Support to support three IEEE 802.15.4 stacks (Zigbee, rf4ce, Thread), while simultaneously acting as a Bluetooth Low Energy peripheral and maintain a Bluetooth connection with a smartphone.

ConcurrentConnect™ Technology

The QPG7015M can concurrently listen to one IEEE 802.15.4 RF channel, and one Bluetooth advertisement channel.

In this way it can combine a Zigbee Router role with Bluetooth Low Energy Central/Observer role. Another example would be the combination of a Thread Router role with a Bluetooth Low Energy Mesh Node.

The QPG7015M has been optimized for reliable communication in harsh radio environments. The excellent receiver sensitivity and integrated PA allow extended coverage. Built-in IEEE 802.15.4 antenna diversity with two antennas improves the reliable link budget by 8 dB resulting in approximately 70% more reliable range compared to similar systems with only one antenna. In high density networks the packet-in-packet resynchronization further improves the communication reliability. The Coexistence Interface can be used to enable coexistence of the QPG7015M radio with other potentially interfering radios (Wi-Fi, Bluetooth) within the same device.

Ultra-Low Power Consumption

The QPG7015M is designed for ultra-low power network applications. It supports Zigbee rf4ce duty cycling and can wake up the host when a specified message has been received, with Zigbee rf4ce Network layer and Profile layer Deep Packet Inspection, to allow the host to stay asleep as much as possible.

Low Cost

The QPG7015M is designed to operate on PCB designs using only low-cost components and printed circuit antennas. It has two single-ended RF ports with integrated matching and filtering. No expensive shielding, chip antennas or voltage regulators are required.

QPG7015M

IEEE 802.15.4 / Bluetooth® Low Energy Multi-Protocol Multi-Channel

Communications Controller

General Characteristics

Package	LGA32, 4x4 mm (0.4 mm pitch)
Operating Temperature	-40 to +85 °C (industrial)
Storage Temperature	-50 to +150 °C
Soldering Temperature	260 °C (10 s max)
Compliance	RoHS

Electrical Characteristics

Standby Mode Currents 1, 3			
Using internal LjRC oscillator	4.0 µA		
Using 32 KiHz crystal oscillator	4.7 µA		
Using 32MHz crystal oscillator	850 µA		
Operational Currents ¹ (with / w	vithout DC/DC Converter)		
Receive IEEE (single antenna)	4.4 / 6.0 mA		
Receive IEEE (antenna diversity)	5.6 / 7.7 mA		
Receive IEEE (multi-channel)	8.2 / 11.6 mA		
Receive Bluetooth	7.6 / 10.6 mA		
Transmit (at 0 dBm)	15.3 / 22.4 mA		
Transmit (at 20 dBm)	100 / 110 mA		
Supply Voltage	2.1 to 3.6 V		
Interfaces and Peripherals			
SPI Slave host interface	up to 16 MHz		
UART host interface	2 MBd		
USB Device host interface	USB 2.0, up to 12 Mbit/s		
Programmable GPIO lines	15		
Analog input lines	1		
10/12-bit ADC to monitor the analog input line, the power supply level and the temperature			
Crystal Frequency	32.000 MHz (±40 ppm)		
Optional	32.768 kHz		

Radio Characteristics

Radio Regulations compliant	ETSI EN 300 328 FCC CFR-47 Part 15 ARIB STD-T66
Transmit Power	+20 dBm (adjustable down in 1 dB steps)

IEEE 802.15.4 Radio Characteristics

Standards compliant		
Standards compliant	IEEE 002.15.4-2015	
Frequency Band	2400 – 2483.5 MHz	
Channels	16 (programmable, 5 MHz steps)	
Data Rate	250 kbit/s	
Receiver Sensitivity 1		
Single channel	-98 dBm	
Multi-channel	-96 dBm	
IEEE/Bluetooth concurrent mode	-95 dBm	
Antenna diversity gain ²	8 dB	
(increases the 'effective' receiver sensitivity to -106 dBm)		

(increases the 'effective' receiver sensitivity to -106 dBm)

Bluetooth Low Energy Radio Characteristics

St	andards compliant	Bluetooth Core Specification v5.0, Low Energy
Fr	equency Band	2402 – 2480 MHz
Cł	nannels	40 (2 MHz step size)
Da	ata Rates	125 kbit/s, 500 kbit/s, 1 Mbit/s, 2 Mbit/s
Re	eceiver Sensitivity ¹ (channel 0)	
	2 Mbit/s	-92 dBm
	1 Mbit/s, Bluetooth only	-95.5 dBm
	500 kbit/s, Bluetooth only	-98 dBm
	125 kbit/s, Bluetooth only	-103.5 dBm
	Concurrent IEEE 802.15.4 and Bluetooth LE mode	-95 dBm

1) Typical, at 3.0 V and 25 $^\circ\text{C},$ unless specified otherwise.

2) For typical indoor usage in an environment with 50 ns delay spread and 2 MHz signal bandwidth using the Rayleigh fading model: antenna diversity with 2 antennas results in a 8 dB improved link budget at a 1% outage probability compared to no antenna diversity. The 8 dB in link budget translates into 70% more range, if using a two-slope range model with the breakpoint at 10 m and g1 = 2, g2 = 3.5.

3) Standby Mode is not supported with USB host interface.

QPG7015M IEEE 802.15.4 / Bluetooth® Low Energy Multi-Protocol Multi-Channel Communications Controller

Reference Designs, Tools and SW

Qorvo reference designs, development kits, software libraries and production platforms provide a quick time-to-market solution for sensor and control devices for Smart Home networks and for other IEEE 802.15.4 / Bluetooth Low Energy communication products.

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: lpw.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 - 2021 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc. | ConcurrentConnect™ is a trademark of Qorvo, Inc.

The Bluetooth[®] word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Qorvo is under license. All other trademarks and trade names are those of their respective owners.